Permeabilidade de solutos em função de sua lipofilicidade. Uma visão geral do ensaio experimental. Dados cinéticos obtidos com o ensaio de autoextinção de calceína usando vesículas compostas de DOPC misturado com tampão (cinza) ou choque osmoticamente com KCl 52,5 mM (ciano), formato de sódio 50 mM (vermelho), L-lactato de sódio 50 mM (azul) ou 120 mM de glicerol (laranja) a 20 °C. B Descrição esquemática do processo de permeação, x(t), através de uma membrana lipídica com um perfil de energia livre de exemplo, ΔG(x) (caudas lipídicas, cinza; porção glicerol, púrpura; porção fosfato, ocre; e porção colina, azul; moléculas de água não são mostradas). C Perfis de energia livre selecionados de simulações de solutos com níveis variados de hidrofobicidade (I mais hidrofílico, IX mais hidrofóbico) permeando através de uma membrana lipídica DOPC em função da distância do centro da bicamada ao longo da membrana. Apenas metade de todo o perfil de permeação simétrica é mostrada. D Perfis de acessibilidade de solvente dos solutos permeantes ao longo do caminho de permeação. Os solutos interagem com as moléculas do solvente mesmo profundamente na região da cauda da membrana (x < 1,0 nm). Coeficientes de permeabilidade E–G para membranas DOPC de experimentos a 20 °C (E, G) e simulações (F, G) plotadas contra o logaritmo de octanol/água (logPOW ) e coeficiente de partição membrana/água (logPMW ) dos solutos. Solutos dos níveis hidrofóbicos I (logPOW = −2.14) a IX (logPOW = 1,1) foram utilizados nas simulações. RegistroP é log10 (coeficiente de partição), onde P refere-se à distribuição de equilíbrio de uma molécula entre a fase hidrofóbica e hidrofílica de dois solventes imiscíveis. O registro experimentalPOW os valores para ácidos fracos e glicerol (E, G) foram retirados do banco de dados PubChem (https://pubchem.ncbi.nlm.nih.gov/). O log simuladoPOW os valores (F, G) foram retirados do trabalho25; logPMW os valores (F) foram obtidos a partir das presentes simulações. Os coeficientes de partição estão relacionados com a diferença de energia livre entre as respectivas fases. No caso de PMW , esta é a diferença entre o centro da membrana e a fase solvente. Os valores da energia livre são apresentados em (C). Crédito:Comunicação da Natureza (2022). DOI:10.1038/s41467-022-29272-x
Bactérias, fungos e leveduras são muito bons em excretar substâncias úteis, como ácidos fracos. Uma maneira pela qual eles fazem isso é através da difusão passiva de moléculas através da membrana celular. Ao mesmo tempo, as células precisam evitar o vazamento de numerosas moléculas pequenas. As células de levedura, por exemplo, podem viver em ambientes hostis graças a um sistema de membrana muito robusto e relativamente impermeável. Biochemists at the University of Groningen have studied how the composition of the membrane affects passive diffusion and the robustness of the cell membrane. Their results, which were published in
Nature Communications on March 25, could help the biotech industry to optimize microbial production of useful molecules and help in drug design.
Border control is very important to cells. Their membranes separate the inner and outer environments, which are quite different. To absorb useful compounds, such as nutrients, or to excrete waste, cells can use selective transport systems. However, some transport across the membrane takes place by passive diffusion. This is a non-selective process that will let some molecules go in or out, depending on their size and hydrophobicity, for example. Active transporters have been studied extensively; however, our knowledge of passive diffusion through the membrane is still very incomplete.
Synthetic vesicles This is a problem for the biotechnology industry, which uses cells as factories to produce a myriad of useful substances and that needs these worker cells to survive under harsh conditions, for example in an environment with a high alcohol or weak acid concentration. Bert Poolman, Professor of Biochemistry at the University of Groningen, was approached by a biotech company that was interested in producing lactic acid in bacteria. They wanted to know more about passive diffusion. This fitted in nicely with another project that Poolman is working on. "We are highly interested in these passive transport processes because of our involvement in a project to build a synthetic cell," says Poolman. "If you can use passive diffusion instead of an active transport system, you need fewer parts to construct such a cell."
So, he combined both questions in a research project. "We started out with a systematic study of what causes the differences in permeability of yeast membranes and bacterial membranes," says Poolman. His team created synthetic vesicles that were made up of three to four different lipids. Ergosterol or cholesterol was added to the membranes to affect their fluidity and rigidity. A range of small molecules was tested using this system and the results from these experiments guided molecular dynamic simulations of diffusion through membranes. The in-silico studies, supervised by Professor Siewert-Jan Marrink, provided a deeper insight into the molecular mechanism of diffusion.
Tweaking The fatty acid tails of the lipids turned out to be most important in determining the properties of membranes, whereas the hydrophilic head groups had little effect on the permeability. The length of the tails also mattered. "And saturated tails, with no double carbon bonds, are stiffer than unsaturated ones. Hydrophobic interactions cause a close packing of these tails, resulting in a gel phase that is not very penetrable," explains Poolman. Sterols increase the fluidity but in the case of yeast, which uses ergosterol, the permeability remains low. "Thus, by tweaking the saturation of the fatty acids and the type and amount of sterol in the membrane, we can modify the permeability of the plasma membrane of yeast and bacterial cells."
Poolman and his colleagues have, therefore, defined a number of variables that alter the permeability of membranes for different classes of compounds. This information can be used by companies that use yeasts or bacteria as cell factories. "However, our results cannot be directly applied to those cells," says Poolman. "Real membranes contain hundreds of different lipids and the composition can vary between different locations in the membrane. In addition, these cell membranes contain all kinds of proteins. If you make changes in, for example, the lipid composition of the membrane, a lot can go wrong and the function of a membrane protein can be affected."
Drug design The increased understanding of the physical processes that affect permeability can help companies to understand why certain cells are better for specific processes than others. "The usual way to tweak strains is by directed evolution. Our results will help companies to better understand the results of those optimizations and guide their cell engineering efforts."
Another application is the design of drugs that act inside cells. "Pharmaceutical companies use a set of empirically established rules to optimize drugs for action inside cells, based on parameters such as size or polarity. Our study highlights the importance of the membrane composition of the targeted cells and this could help in drug design."