• Home
  • Química
  • Astronomia
  • Energia
  • Natureza
  • Biologia
  • Física
  • Eletrônicos
  •  science >> Ciência >  >> Astronomia
    Como a matéria escura pode ser medida no sistema solar

    Na concepção deste artista, a espaçonave Voyager 1 da NASA tem uma visão panorâmica do sistema solar. Os círculos representam as órbitas dos principais planetas externos:Júpiter, Saturno, Urano e Netuno. Lançada em 1977, a Voyager 1 visitou os planetas Júpiter e Saturno. A espaçonave está agora a mais de 14 bilhões de milhas da Terra, tornando-se o objeto feito pelo homem mais distante já construído. Na verdade, a Voyager 1 agora está se aproximando do espaço interestelar, a região entre as estrelas que está cheia de gás, poeira e material reciclado de estrelas moribundas. Crédito:NASA, ESA e G. Bacon (STScI)

    Imagens da Via Láctea mostram bilhões de estrelas dispostas em um padrão espiral irradiando do centro, com gás iluminado no meio. Mas nossos olhos só podem vislumbrar a superfície do que mantém nossa galáxia unida. Cerca de 95 por cento da massa da nossa galáxia é invisível e não interage com a luz. É feito de uma substância misteriosa chamada matéria escura, que nunca foi medida diretamente.
    Agora, um novo estudo calcula como a gravidade da matéria escura afeta objetos em nosso sistema solar, incluindo naves espaciais e cometas distantes. Também propõe uma maneira pela qual a influência da matéria escura pode ser observada diretamente com um experimento futuro. O artigo foi publicado no Monthly Notices of the Royal Astronomical Society .

    “Estamos prevendo que, se você for longe o suficiente no sistema solar, terá a oportunidade de começar a medir a força da matéria escura”, disse Jim Green, coautor do estudo e consultor do Escritório do Cientista-Chefe da NASA. "Esta é a primeira ideia de como fazer e onde faríamos."

    Matéria escura em nosso quintal

    Aqui na Terra, a gravidade do nosso planeta nos impede de voar para fora de nossas cadeiras, e a gravidade do Sol mantém nosso planeta orbitando em um cronograma de 365 dias. Mas quanto mais longe do Sol uma nave espacial voa, menos sente a gravidade do Sol e mais sente uma fonte diferente de gravidade:a da matéria do resto da galáxia, que é principalmente matéria escura. A massa dos 100 bilhões de estrelas da nossa galáxia é minúscula em comparação com as estimativas do conteúdo de matéria escura da Via Láctea.

    Para entender a influência da matéria escura no sistema solar, o principal autor do estudo, Edward Belbruno, calculou a “força galáctica”, a força gravitacional geral da matéria normal combinada com a matéria escura de toda a galáxia. Ele descobriu que no sistema solar, cerca de 45 por cento dessa força é da matéria escura e 55 por cento é da normal, chamada "matéria bariônica". Isso sugere uma divisão aproximadamente meio a meio entre a massa da matéria escura e a matéria normal no sistema solar.

    "Fiquei um pouco surpreso com a contribuição relativamente pequena da força galáctica devido à matéria escura sentida em nosso sistema solar em comparação com a força devido à matéria normal", disse Belbruno, matemático e astrofísico da Universidade de Princeton e da Universidade Yeshiva. "Isso é explicado pelo fato de que a maior parte da matéria escura está nas partes externas da nossa galáxia, longe do nosso sistema solar."

    Uma grande região chamada "halo" de matéria escura circunda a Via Láctea e representa a maior concentração de matéria escura da galáxia. Há pouca ou nenhuma matéria normal no halo. Se o sistema solar estivesse localizado a uma distância maior do centro da galáxia, sentiria os efeitos de uma proporção maior de matéria escura na força galáctica porque estaria mais perto do halo de matéria escura, disseram os autores.

    Como a matéria escura pode influenciar as naves espaciais

    Green e Belbruno prevêem que a gravidade da matéria escura interage levemente com todas as naves espaciais que a NASA enviou em caminhos que levam para fora do sistema solar, de acordo com o novo estudo.

    “Se as espaçonaves se moverem pela matéria escura por tempo suficiente, suas trajetórias serão alteradas, e isso é importante levar em consideração para o planejamento de certas missões futuras”, disse Belbruno.

    Essas naves espaciais podem incluir as sondas aposentadas Pioneer 10 e 11 lançadas em 1972 e 1973, respectivamente; as sondas Voyager 1 e 2 que exploram há mais de 40 anos e entraram no espaço interestelar; e a espaçonave New Horizons que voou por Plutão e Arrokoth no Cinturão de Kuiper.

    Mas é um efeito minúsculo. Depois de viajar bilhões de quilômetros, o caminho de uma espaçonave como a Pioneer 10 se desviaria apenas cerca de 1,6 metros devido à influência da matéria escura. “Eles sentem o efeito da matéria escura, mas é tão pequeno que não podemos medi-lo”, disse Green.

    Duas vistas do Hubble do maciço aglomerado de galáxias Cl 0024+17 (ZwCl 0024+1652) são mostradas. À esquerda está a visão em luz visível com estranhos arcos azuis aparecendo entre as galáxias amareladas. Estas são as imagens ampliadas e distorcidas de galáxias localizadas muito atrás do aglomerado. Sua luz é dobrada e amplificada pela imensa gravidade do aglomerado em um processo chamado lente gravitacional. À direita, um sombreamento azul foi adicionado para indicar a localização do material invisível chamado matéria escura que é matematicamente necessária para explicar a natureza e a localização das galáxias com lentes gravitacionais que são vistas. Crédito:NASA, ESA, M.J. Jee e H. Ford (Universidade Johns Hopkins

    Onde a força galáctica assume?

    A uma certa distância do Sol, a força galáctica torna-se mais poderosa do que a atração do Sol, que é feito de matéria normal. Belbruno e Green calcularam que essa transição ocorre em torno de 30.000 unidades astronômicas, ou 30.000 vezes a distância da Terra ao Sol. Isso está muito além da distância de Plutão, mas ainda dentro da Nuvem de Oort, um enxame de milhões de cometas que circunda o sistema solar e se estende por 100.000 unidades astronômicas.

    Isso significa que a gravidade da matéria escura pode ter desempenhado um papel na trajetória de objetos como “Oumuamua, o cometa ou asteroide em forma de charuto que veio de outro sistema estelar e passou pelo sistema solar interno em 2017. Sua velocidade incomumente rápida pode ser explicada pela gravidade da matéria escura empurrando-o por milhões de anos, dizem os autores.

    Se houver um planeta gigante nos confins do sistema solar, um objeto hipotético chamado Planeta 9 ou Planeta X que os cientistas têm procurado nos últimos anos, a matéria escura também influenciaria sua órbita. Se este planeta existir, a matéria escura talvez possa até afastá-lo da área onde os cientistas estão atualmente procurando por ele, escrevem Green e Belbruno. A matéria escura também pode ter feito com que alguns dos cometas da Nuvem de Oort escapassem completamente da órbita do Sol.

    A gravidade da matéria escura pode ser medida?

    Para medir os efeitos da matéria escura no sistema solar, uma espaçonave não precisaria necessariamente viajar tão longe. At a distance of 100 astronomical units, a spacecraft with the right experiment could help astronomers measure the influence of dark matter directly, Green and Belbruno said.

    Specifically, a spacecraft equipped with radioisotope power, a technology that has allowed Pioneer 10 and 11, the Voyagers, and New Horizon to fly very far from the Sun, may be able to make this measurement. Such a spacecraft could carry a reflective ball and drop it at an appropriate distance. The ball would feel only galactic forces, while the spacecraft would experience a thermal force from the decaying radioactive element in its power system, in addition to the galactic forces. Subtracting out the thermal force, researchers could then look at how the galactic force relates to deviations in the respective trajectories of the ball and the spacecraft. Those deviations would be measured with a laser as the two objects fly parallel to one another.

    A proposed mission concept called Interstellar Probe, which aims to travel to about 500 astronomical units from the Sun to explore that uncharted environment, is one possibility for such an experiment.

    More about dark matter

    Dark matter as a hidden mass in galaxies was first proposed in the 1930s by Fritz Zwicky. But the idea remained controversial until the 1960s and 1970s, when Vera C. Rubin and colleagues confirmed that the motions of stars around their galactic centers would not follow the laws of physics if only normal matter were involved. Only a gigantic hidden source of mass can explain why stars at the outskirts of spiral galaxies like ours move as quickly as they do.

    Today, the nature of dark matter is one of the biggest mysteries in all of astrophysics. Powerful observatories like the Hubble Space Telescope and the Chandra X-Ray Observatory have helped scientists begin to understand the influence and distribution of dark matter in the universe at large. Hubble has explored many galaxies whose dark matter contributes to an effect called "lensing," where gravity bends space itself and magnifies images of more distant galaxies.

    Astronomers will learn more about dark matter in the cosmos with the newest set of state-of-the-art telescopes. NASA's James Webb Space Telescope, which launched Dec. 25, 2021, will contribute to our understanding of dark matter by taking images and other data of galaxies and observing their lensing effects. NASA's Nancy Grace Roman Space Telescope, set to launch in the mid-2020s, will conduct surveys of more than a billion galaxies to look at the influence of dark matter on their shapes and distributions.

    The European Space Agency's forthcoming Euclid mission, which has a NASA contribution, will also target dark matter and dark energy, looking back in time about 10 billion years to a period when dark energy began hastening the universe's expansion. And the Vera C. Rubin Observatory, a collaboration of the National Science Foundation, the Department of Energy, and others, which is under construction in Chile, will add valuable data to this puzzle of dark matter's true essence.

    But these powerful tools are designed to look for dark matter's strong effects across large distances, and much farther afield than in our solar system, where dark matter's influence is so much weaker.

    "If you could send a spacecraft out there to detect it, that would be a huge discovery," Belbruno said.
    © Ciência https://pt.scienceaq.com