Como as redes neurais aprendem? Uma fórmula matemática explica como eles detectam padrões relevantes
As redes neurais são inspiradas no cérebro humano e consistem em nós ou “neurônios” interconectados que podem processar e transmitir informações. O processo de aprendizagem em redes neurais envolve ajustar as conexões entre esses neurônios com base nos dados de entrada e na saída desejada. Esse ajuste é guiado por um conceito matemático denominado “algoritmo de retropropagação”, que calcula e atualiza com eficiência os pesos associados a cada conexão.
Algoritmo de retropropagação: O algoritmo de retropropagação é a base do treinamento de redes neurais e é amplamente utilizado para otimizar o desempenho da rede. Aqui está um resumo de como ele funciona:
1.
Propagação direta: - A informação flui através da rede, dos neurônios de entrada aos neurônios de saída.
- Cada neurônio calcula sua saída com base em suas entradas e em uma função específica (por exemplo, sigmóide ou ReLU).
- A saída é comparada com a saída desejada ou alvo, resultando em um valor de erro.
2.
Cálculo de erro: - O erro é calculado medindo a diferença entre a saída da rede e a saída desejada. Uma função de erro comumente usada é o erro quadrático médio (MSE), que quantifica a diferença quadrática média entre os resultados reais e desejados.
3.
Retropropagação: - Nesta fase crucial, o erro é propagado para trás pela rede, camada por camada.
- O algoritmo calcula o gradiente do erro em relação aos pesos de cada neurônio usando a diferenciação da regra da cadeia.
- Esta informação de gradiente indica como os pesos devem ser ajustados para minimizar o erro.
4.
Ajuste de peso: - Com base nos gradientes calculados, os pesos são ajustados para diminuir o erro. Este processo é semelhante a “ensinar” a rede ajustando suas conexões internas.
- Os pesos são atualizados proporcionalmente ao gradiente e a uma taxa de aprendizagem, que determina a magnitude do ajuste. Uma taxa de aprendizagem mais elevada leva a uma aprendizagem mais rápida, mas potencialmente menos estável, enquanto uma taxa de aprendizagem mais baixa resulta numa aprendizagem mais cautelosa, mas potencialmente mais lenta.
5.
Iteração e Convergência: - As etapas de propagação direta, cálculo de erro e retropropagação são iteradas várias vezes até que o erro seja minimizado ou a rede atinja um critério de convergência predefinido.
- À medida que o treinamento avança, a rede aprende refinando continuamente seus pesos para produzir resultados que correspondam aos valores desejados.
O algoritmo de retropropagação permite que as redes neurais detectem padrões e relacionamentos dentro dos dados, ajustando com eficiência seus parâmetros internos. Esse processo permite que eles executem tarefas complexas, como reconhecimento de imagens, processamento de linguagem natural e tomada de decisões.