Aqui está um detalhamento do trabalho realizado em processos isotérmicos e adiabáticos, juntamente com as explicações:
processo isotérmico *
Definição: Um processo isotérmico ocorre em temperatura constante.
*
Trabalho feito: O trabalho realizado em um processo isotérmico é dado por:
`` `
W =nrt * ln (v₂/v₁)
`` `
onde:
* W é o trabalho feito
* n é o número de moles de gás
* R é a constante de gás ideal
* T é a temperatura constante
* V₁ é o volume inicial
* V₂ é o volume final
*
Explicação: Em um processo isotérmico, a energia interna do sistema permanece constante (uma vez que a temperatura é constante). Portanto, todo o calor adicionado ao sistema é usado para trabalhar nos arredores. O termo logaritmo natural reflete a expansão ou compressão do gás.
Processo adiabático *
Definição: Um processo adiabático ocorre sem troca de calor entre o sistema e o ambiente (q =0).
*
Trabalho feito: O trabalho realizado em um processo adiabático é dado por:
`` `
W =(p₂v₂ - p₁v₁) / (1 - γ)
`` `
onde:
* W é o trabalho feito
* P₁ e v₁ são a pressão e o volume iniciais
* P₂ e v₂ são a pressão e o volume final
* γ é o índice adiabático (razão de aquecimentos específicos, CP/CV)
*
Explicação: Em um processo adiabático, o sistema é isolado de seus arredores, de modo que o trabalho realizado é inteiramente às custas da energia interna do sistema. O índice adiabático γ representa a relação entre a capacidade de calor sob pressão constante (CP) e o volume constante (CV), o que é específico para o gás.
Pontos -chave para lembrar *
Convenção de assinatura: O trabalho é positivo quando o sistema funciona no ambiente (expansão). O trabalho é negativo quando o trabalho é realizado no sistema (compactação).
*
suposições de gás ideais: Essas fórmulas são baseadas na lei ideal de gás. Na realidade, gases reais podem se desviar dessas expressões.
*
Aplicações: Essas expressões são fundamentais na termodinâmica, especialmente na compreensão de como os motores e outros sistemas operam.
Deixe -me saber se você quiser mais detalhes ou tiver algum cenário específico que deseja explorar!