Um quarterback lança um passe em um ângulo de 35° acima da horizontal com velocidade inicial de 25 ms A bola é pega pelo recebedor 2,55 segundos depois Determina a distância do lançamento?
Nós temos:
$$\overrightarrow v_i=v_i\cos\theta\hat{i}+v_i\sin\theta\hat{j}=(25\cos35\degree)\hat{i}+(25\sin35\degree)\hat {j},$$
$$t=2,55\texto{s},$$
$$y_f=0,$$
$$a_y=-g=-9,8\text{m/s}^2.$$
O alcance (distância horizontal) é:
$$x_f=x_i+v_{xi}t=\left[(25\cos35\degree)(2.55\text{ s})\right]\hat{i}=\boxed{49.3\text{ m}}$ $
A altura máxima é:
$$y_{max}=y_i+v_{yi}t+\frac{1}{2}a_yt^2=0+\left[(25\sin35\degree)(2.55\text{ s})\right]+ \frac{1}{2}(-9,8\text{ m/s}^2)(2,55\text{ s})^2$$
$$y_{max}=\boxed{16.3\text{m}}$$